El I+D, la base de la pila de combustible

0
796

Los avances en las observaciones en tiempo real de la degradación de los catalizadores en las pilas de combustible podrían abrir las puertas a una nueva generación más eficiente y duradera.

La pila de combustible de hidrógeno

Las pilas de combustible generan electricidad a través de la reacción química del hidrógeno gaseoso que lleva el vehículo con el oxígeno del aire. Más concretamente, cada una de las celdas del sistema genera electricidad a partir de la reacción química entre el cátodo de oxígeno y el ánodo de hidrógeno, que produce agua como subproducto.

Durante la reacción química, las moléculas de hidrógeno se separan en electrones e iones de hidrógeno en el ánodo de hidrógeno, donde el catalizador de platino separa los electrones de la molécula de hidrógeno. Los electrones se desplazan hasta el cátodo de oxígeno y generan la electricidad que propulsa el motor. Mientras tanto, los iones de hidrógeno atraviesan una membrana de polímero para llegar al cátodo de oxígeno, donde se produce agua como subproducto de los iones y electrones de hidrógeno al exponerse al oxígeno del aire. El platino también funciona como catalizador de esta reacción.

El platino

El platino es esencial para la generación de electricidad en las pilas de combustible, y desempeña un papel crucial para aumentar la eficiencia de la generación eléctrica en la pila de combustible. Sin embargo, el platino es escaso y caro. Por otra parte, al generarse electricidad, las nanopartículas de platino se engrosan, con lo que disminuye la potencia de la pila de combustible. Para evitar ese engrosamiento y mantener el rendimiento catalítico, es preciso conocer el comportamiento subyacente al proceso. No obstante, la microscópica escala de las nanopartículas de platino dificulta la observación por medios convencionales

Toyota Motor Corporation (TMC) y el Centro de Cerámica Fina de Japón han desarrollado una nueva técnica de observación gracias a la cual los investigadores pueden supervisar el comportamiento de las partículas nanométricas de platino en las reacciones químicas que se producen en las pilas de combustible, para poder observar los procesos que reducen la reactividad catalítica.

El platino es un catalizador esencial para las reacciones químicas que se producen entre el oxígeno y el hidrógeno en las pilas de combustible para generar electricidad.

Representación esquemática del proceso de ruptura del enlace O-O en la molécula de oxígeno (O2) en presencia de ácido sulfúrico o ácido fosfórico, sobre platino limpio (A) y platino modificado con cianuro (B)./ CSIC
Representación esquemática del proceso de ruptura del enlace O-O en la molécula de oxígeno (O2) en presencia de ácido sulfúrico o ácido fosfórico, sobre platino limpio (A) y platino modificado con cianuro (B)./ CSIC

El nuevo método de observación

El método convencional de observación de nanopartículas de platino consiste en comparar en un punto fijo las partículas de platino antes de la reacción y después de la reacción. Mediante este método, se descubrió que, después de la reacción, las nanopartículas de platino eran más gruesas y presentaban una menor reactividad. No obstante, solo se pueden plantear hipótesis en cuanto a esta reducción, por la imposibilidad de observar los procesos que dan lugar a ese engrosamiento.

La nueva técnica de observación emplea una nueva muestra observable de menor escala, que puede simular el entorno y las condiciones exactas que se producen en las pilas de combustible. Esto, junto con un nuevo método de aplicación de voltaje a las muestras montadas en un microscopio electrónico de transmisión, permite observar el proceso de engrosamiento en tiempo real todas las fases de la generación eléctrica. Un microscopio electrónico de transmisión es un dispositivo que permite la observación y el análisis de materiales de tamaño atómico (0,1 nm).

Gracias al nuevo método de observación, se pueden detectar los puntos del carbono portador donde el platino se engrosa, así como el voltaje generado durante el proceso de engrosamiento. El método también puede ayudar a determinar las distintas características de diversos tipos de materiales portadores. Este análisis global puede guiar la I+D hacia la mejora del rendimiento y la durabilidad del catalizador de platino, así como de la pila de combustible.

Las imágenes a continuación muestran el engrosamiento de las nanopartículas de platino:

id_toyota_pila_combustible_-_700

Las líneas de puntos muestran el engrosamiento de las nanopartículas de platino sobre un portador de carbono. Las partículas de platino se han desplazado y unido para formar nanopartículas de platino más grandes y gruesas.

Fuente: Toyota (Nota de prensa)

Dejar respuesta

Por favor introduce tu comentario

Please enter your name here